Proportionate Minimum Error Entropy Algorithm for Sparse System Identification
نویسندگان
چکیده
Sparse system identification has received a great deal of attention due to its broad applicability. The proportionate normalized least mean square (PNLMS) algorithm, as a popular tool, achieves excellent performance for sparse system identification. In previous studies, most of the cost functions used in proportionate-type sparse adaptive algorithms are based on the mean square error (MSE) criterion, which is optimal only when the measurement noise is Gaussian. However, this condition does not hold in most real-world environments. In this work, we use the minimum error entropy (MEE) criterion, an alternative to the conventional MSE criterion, to develop the proportionate minimum error entropy (PMEE) algorithm for sparse system identification, which may achieve much better performance than the MSE based methods especially in heavy-tailed non-Gaussian situations. Moreover, we analyze the convergence of the proposed algorithm and derive a sufficient condition that ensures the mean square convergence. Simulation results confirm the excellent performance of the new algorithm.
منابع مشابه
Robust proportionate adaptive filter based on maximum correntropy criterion for sparse system identification in impulsive noise environments
Proportionate type adaptive filtering (PtAF) algorithms have been successfully applied for sparse system identification. The major drawback of the traditional PtAF based on the mean square error (MSE) criterion is poor robustness in the presence of abrupt changes because the MSE is valid and rational under Gaussian assumption. However, this assumption is not satisfied in most real-world applica...
متن کاملBlock Sparse Memory Improved Proportionate Affine Projection Sign Algorithm
A block sparse memory improved proportionate affine projection sign algorithm (BS-MIP-APSA) is proposed for block sparse system identification under impulsive noise. The new BS-MIP-APSA not only inherits the performance improvement for block-sparse system identification, but also achieves robustness to impulsive noise and the efficiency of the memory improved proportionate affine projection sig...
متن کاملA Low Delay and Fast Converging Improved Proportionate Algorithm for Sparse System Identification
A sparse system identification algorithm for network echo cancellation is presented. This new approach exploits both the fast convergence of the improved proportionate normalized least mean square (IPNLMS) algorithm and the efficient implementation of the multidelay adaptive filtering (MDF) algorithm inheriting the beneficial properties of both. The proposed IPMDF algorithm is evaluated using i...
متن کاملA General Zero Attraction Proportionate Normalized Maximum Correntropy Criterion Algorithm for Sparse System Identification
A general zero attraction (GZA) proportionate normalized maximum correntropy criterion (GZA-PNMCC) algorithm is devised and presented on the basis of the proportionate-type adaptive filter techniques and zero attracting theory to highly improve the sparse system estimation behavior of the classical MCC algorithm within the framework of the sparse system identifications. The newly-developed GZA-...
متن کاملDiffusion L0-norm constraint improved proportionate LMS algorithm for sparse distributed estimation
To exploit the sparsity of the considered system, the diffusion proportionate-type least mean square (PtLMS) algorithms assign different gains to each tap in the convergence stage while the diffusion sparsity-constrained LMS (ScLMS) algorithms pull the components towards zeros in the steady-state stage. In this paper, by minimizing a differentiable cost function that utilizes the Riemannian dis...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Entropy
دوره 17 شماره
صفحات -
تاریخ انتشار 2015